

Helping you build a better machine, faster.

Precision Balls

Helping you build a better machine, **faster**.

Danaher Motion -Helping you build a better machine, faster

Danaher Corporation combined over 30 industry-leading brands such as Kollmorgen, Thomson, Dover, Pacific Scientific, Portescap, Neff, Seidel and Bautz to establish a customer-focused motion control manufacturing company called Danaher Motion. We offer this powerful set of integrated motion control technologies under the Danaher Motion and Thomson brand names. We are a \$1B+ global motion control leader, unique in our ability to marshal decades of application experience and technical innovation to help you build better machines, faster.

Danaher Motion defines high standards of quality, innovation and technology. We enable improved machine performance and reliability while controlling costs. Our global manufacturing footprint, rapid customization and prototyping capabilities drive quick lead times. Unmatched application experience and design expertise empowers you to commission machines faster.

Consider your options in today's market for a motion control partner. Select Danaher Motion and join a team with 6100 employees, over 60 years of application experience and 2000+ distributor locations around the globe. Danaher Motion serves industries as diverse as semiconductor, aerospace and defense, electric vehicle systems, packaging, printing, medical and robotics. We offer an unparalleled depth and breadth of motion control product solutions through a worldwide service and support infrastructure, field service engineers and support teams available when and where you need them.

The Danaher Business System Building sustainable competitive advantage into your business

The Danaher Business System (DBS) was established to increase the value we bring to customers. It is a mature and successful set of tools we use daily to continually improve manufacturing operations and product development processes. DBS is based on the principles of Kaizen which continuously and aggressively eliminate waste in every aspect of our business. DBS focuses the entire organization on achieving breakthrough results that create competitive advantages in quality, delivery and performance — advantages that are passed on to you. Through these advantages Danaher Motion is able to provide you faster times to market as well as unsurpassed product selection, service, reliability and productivity.

Local Support Around the Globe

Table of Contents

Table of Contents

Material Characteristics, How to Order	and 5
Ball Hardness Correction Chart	6
Corrosion Resistance Properties Chart	7
ABMA Definitions	8
Ball Grade Charts	9
52100 Chrome Steel Balls	. 10
440C stainless Steel Balls	. 12
302, 302HQ, 316 and 316L Stainless Steel Balls	. 14
Monel and K-Monel Balls	15
Brass and Bronze Balls	16
Burnishing Media	17
Nylon and Specialty Plastic Balls	18
Ceramic Balls	19
Titanium and Hollow 440A Stainless Steel/ Type 430 Stainless Steel Balls	20
Metric Equivalents Dimensional Conversion Chart	21
Quick Quote Fax Form	22
A2LA Accredited Calibration Lab	22

Choose Danaher Motion as your Thomson Precision Ball Supplier.

THE ONLY BALL MANUFACTURER MEETING THESE CRITERIA:

- ISO 9001:2000 Registered
- A2LA Accredited Calibration Lab (Spheres)
- Three-Time GM Supplier of the Year
- Two-Time ITT Supplier Gold Award Recipient
- Hollow, Ceramic and Specialty Balls
- Worldwide Service and Support

The Most Complete Variety of Precision Balls, Ball Materials and Technologies

Overview

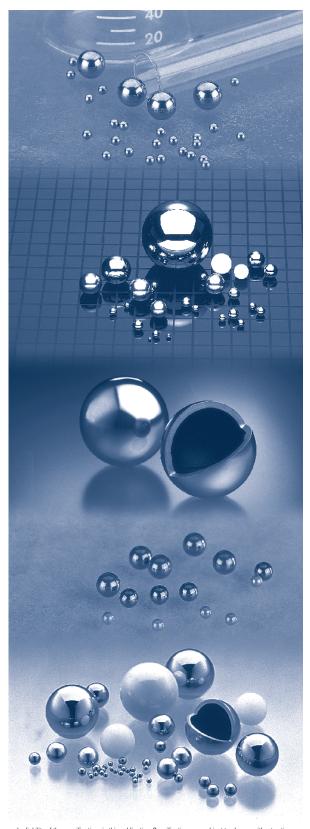
Quality Ball Technology from Danaher Motion

Expect only the finest in quality ball technology from Danaher Motion. Danaher Motion offers ball sphericity within 3 millionths of an inch (0.077 micron), 100% quality inspection, and a choice of 27 high performance materials—all guaranteed to meet or exceed the standards of the American Bearing Manufacturers Association (ANSI/ABMA Std. 10-1989).

The specifications for each Thomson quality ball are presented in this guide. Material characteristics are explained below. Each material's compositional analysis, mechanical properties and various testing standards are described with the ball engineering specifications within the guide.

In addition, a fraction - to - decimal - to - millimeter conversion chart is provided for your convenience. For more detailed information on Thomson quality ball technology, contact us directly at 1-540-633-3400.

How to Order:


When ordering balls, please specify the following:

- · Nominal ball diameter
- Type of material
- Grade
- Ball Gaget (if applicable)

All standard balls are always in stock and ready for immediate off-the-shelf delivery. If your application calls for custom balls, send us your specifications and we'll gladly meet them.

To place your order, call us: 540-633-3400, or fax: 540-639-4162 or email at ballrfqs@danahermotion.com

TSince the ball gage is the desired amount by which the lot mean diameter should differ from the nominal diameter, it must be expressed with the proper algebraic sign (+ or -).

Hardness Correction

Hardness Correction Table

Corrections to be added to Rockwell "C" readings taken on the spherical surface for equivalent measure on parallel flats. These correction factors apply only to chrome and AISI-Type 440 stainless steel balls.

Hardness readings of balls taken on spherical surfaces are affected by the curvature and hardness of the ball. Because of these factors, corrections are necessarily added to the hardness read on ball surface to obtain the equivalent hardness on a flat surface. For ball sizes not shown, interpolate between values at right.

Rockwe	Rockwell "C" Readings												
(Curved		Ball Diameters											
surface)	5/16"	3/8"	7/16"	1/2"	9/16"	5/8"	11/16"	3/4"	13/16"	7/8"	15/16"	1"	
55	3.1	2.5	2.1	1.8	1.6	1.4	1.3	1.1	1.0	1.0	.8	.8	
56	2.9	2.4	2.0	1.6	1.5	1.3	1.2	1.0	.9	.9	.7	.7	
57	2.7	2.2	1.8	1.5	1.4	1.2	1.1	.9	.8	.8	.7	.6	
58	2.6	2.1	1.7	1.4	1.2	1.1	1.0	.8	.7	.7	.6	.5	
59	2.4	1.9	1.6	1.3	1.1	1.0	.9	.7	.7	.6	.5	.4	
60	2.2	1.8	1.5	1.2	1.0	.9	.8	.7	.6	.5	.5	.4	
61	2.0	1.6	1.3	1.0	.9	.8	.7	.6	.5	.5	.4	.3	
62	1.8	1.5	1.2	.9	.8	.7	.6	.5	.4	.4	.4	.3	
63	1.7	1.3	1.0	.8	.7	.5	.5	.4	.4	.3	.3	.2	
64	1.5	1.2	.9	.6	.5	.4	.3	.3	.3	.2	.2	.2	
65	1.3	1.0	.7	.5	.4	.3	.2	.2	.2	.2	.1	.1	
66	1.1	.8	.6	.4	.3	.2	.1	.1	.1	.1	_	_	

Hardness Con	version Table: (C	Conversions are	only valid for r	eadings taken on pa	rallel flats.)	
Rockwell	Brinell† 3000	Rock	kwell	Brinell [†]	Rockwell	Brinell [†]
"C" Scale	Kilogram Load	"C" Scale	"B" Scale	3000 Kilogram Load	"B"Scale	3000 Kilogram Load
66	_	40	_	371	94	205
65	739	39	_	362	93	200
64	722	38	_	353	92	195
63	705	37	_	344	91	190
62	688	36	_	336	90	185
61	670	35	_	327	89	180
60	654	34	_	319	88	176
59	634	33	_	311	87	172
58	615	32	_	301	86	169
57	595	31	_	294	85	165
56	577	30	_	286	84	162
55	560	29	_	279	83	159
54	543	28	_	271	82	156
53	525	27	_	264	81	153
52	500	26	_	258	80	150
51	487	25	_	253	79	147
50	475	24	_	247	78	144
49	464	23	100.0	243	77	141
48	451	22	99.0	237	76	139
47	442	21	98.5	231	75	137
46	432	20	97.8	226	74	135
45	421	(19)	97.0	222	73	132
44	409	(18)	96.7	219	72	130
43	400	(17)	96.1	215	71	127
42	390	(16)	95.5	212	70	125
41	381	(15)	94.7	208	_	_

Corrosion Resistance Properties

BALL MATERIALS	Industrial Atmosphere	Hydraulic Oils (Petroleum)	Fresh Water	Salt Water	Food Products	Fruit & Veg. Juices	Milk	Alcohol	HCI-40%	Sulfuric Acid- 40%	Phosphoric Acid-40%	Nitric Acid- 50%	Citric Acid	Ammonia Liquids
52100 CHROME	С	Α	D	D	_	_	_	С	_	_	_	_	С	В
440C STAINLESS	В	Α	С	С	В	_	Α	Α	D	D	Α	Α	Α	Α
302 STAINLESS	В	Α	В	В	Α	_	Α	_	-	_	Α	-	_	-
316 STAINLESS	В	Α	Α	Α	Α	Α	Α	Α	D	D	Α	Α	Α	Α
BRASS	С	В	С	С	D	_	С	С	_	D	D	_	D	_
MONEL	С	Α	Α	В	D	С	С	Α	D	_	С	_	_	Α
NYLON	Α	Α	Α	Α	_	Α	Α	Α	D	D	D	D	С	_
VITON®	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	D
CERAMIC	Α	Α	Α	Α	Α	Α	Α	Α	С	D	С	Α	Α	Α
TITANIUM	_	_	-	_	_	_	_	Α	С	С	_	Α	Α	_

Numbers indicating order of preference

A = excellent B = good C = fair D = poor - = test data not available

ABMA Definitions

Grades and Tolerances (ABMA STD-10)

(2.12) Grade: A specific combination of dimensional form and surface roughness tolerance. A ball grade is designated by a grade number.

(2.4) Ball Diameter Variation: The difference between the largest and the smallest actual single diameter of one hall.

(2.8) Lot Diameter Variation: The difference between the mean diameter of the largest ball and that of the smallest ball in the lot.

(2.9) Nominal Ball Diameter Tolerance: The maximum allowable deviation of any ball lot mean diameter from the nominal ball diameter.

Mechanical Characteristics

Hardness: The measure of resistance to penetration of the ball surface or truncated flat of the ball by a specific indenting shape.

Ball Diameter (ABMA STD-10)

(2.1) Nominal Ball Diameter: The diameter value that is used for the purpose of general identification of a ball size, e.g., 1/4", 6mm, etc.

(2.13) Ball Gage: The prescribed small amount by which the lot mean diameter should differ from nominal diameter, this amount being one of an established series of amounts. A ball gage, in combination with the ball grade and nominal ball diameter, should be considered as the most exact ball size specification to be used by a customer for ordering purposes.

(2.11) Specific Diameter: The amount by which the lot mean diameter differs from the nominal diameter, accurate to the container marking increment for that grade. The specific

diameter should be marked on the unit container.

(2.10) Container Marking Increment: The standard unit steps in micrometers or in millionths of an inch, used to express the specific diameter.

How Ball Diameter Is Indicated

Example:

Surface Qualities

Surface Roughness: Surface roughness consists of all those irregularities which form surface relief and which are conventionally defined within the area where deviations of form and waviness are eliminated.

Waviness: The more widely spaced circumferential component of surface texture.

Danaher Motion Statement of Standard Measurement Conditions:

Diameter: Between two parallel flat carbide gage surfaces under 4 oz. gage force with size corrected to zero gage pressure per ABMA Std. 10.

Deviation from Spherical Form: Determined by rotation of the ball against a linear transducer with less than 4 grams gage force. The resulting polar chart is interpreted using the minimum circumscribed circle method (MCC) per ABMA Std. 10, Appendix A1.1 and AMS 889.3.

Surface Roughness: Determined by a stylus type instrument with the ball stationary. Compliance with Ra limits specified in ABMA Std. 10, Table 3 will be interpreted using a cutoff of .003 for ball radii up to .050, .01 for ball radii up to .130, and .03 over .130, with filtration to optimize the number of cutoffs used to calculate the results.

Grading Charts

Grades	Grades and Tolerances – Inches								
Grade	Size Range	Deviation from Spherical Form	Lot Diameter Variation	Allowable Ball Gage Variation	Nominal Ball Diameter Tolerance	Marking Increments	Maximum Surface Roughness [†] in Microinches "Ra"		
3	.006-1/2"	.000003	±.000003	±.00003	_	0.00001	0.5		
5	.006-1/2"	.000005	±.000005	±.00005	_	0.00001	0.8		
10	.006-7/8"	.000010	±.000010	±.00005	_	0.00001	1.0		
25	.006-1"	.000025	±.000025	±.00010	_	0.00001	2.0		
50	.006-1"	.000050	±.000050	_	±.000200	0.00005	3.0		
100	.006-1"	.000100	±.000100	_	±.000500	_	5.0		
200	.006-1"	.000200	±.000200	_	±.001000	_	8.0		
1000	.006-1"	.001000	±.001000	_	±.005000	_	_		

[†] Maximum surface roughness arithmetic average.

Grades and	Grades and Tolerances – Metric (Millimeter)								
DIN Grade	ABMA Grade	Deviation from Spherical Form	Lot Diameter Variation	Allowable Ball Gage Variation	Nominal Ball Diameter Tolerance	Marking Increments	Maximum Surface Roughness†in Micrometers "Ra"		
_	3	.00008	±.000080	±.0008	_	.00025	0.012		
_	5	.00013	±.000013	±.0013	_	.00025	0.020		
1	10	.00025	±.000250	±.0013	_	.00025	0.025		
H	25	.00060	±.000600	±.0025	_	.00025	0.051		
Ш	50	.00120	±.001200	_	±.0051	.00127	0.076		
IV	100	.00250	±.002500	_	±.0381	_	0.127		
_	200	.00500	±.005000	_	±.0250	_	0.203		
V	1000	.02500	±.025000	_	±.1270	_	_		

[†] Maximum surface roughness arithmetic average.

52100 Chrome Steel Balls

Material Characteristics

Found primarily in ball bearing designs and a variety of demanding industrial applications. A vacuum-degassed AISI E52100 chrome steel is used to obtain a superior ball with a fine surface finish, through-hardness and high load capacity. Also available in consumable electrode vacuum melt material.

Hardness

Our modern heat treating facilities, complete with controlled atmosphere and temperature, allow us to maintain Rockwell hardness within three (3) points in any production run and to attain any specific hardness designated by the customer. AISI E52100 Chrome Steel Balls are made with a through hardness of RC 60 to 67†, depending on requirements. (A table correcting Rockwell "C" values for the curved surface to parallel flats appears on page 6.) tPer ABMA Std 10, Table 1

Material Analysist

Carbon 0.98 to 1.10%
Manganese 0.25 to 0.45%
Silicon 0.15 to 0.35%
Phosphorus Maximum of .025%
Sulphur Maximum of .025%
Chromium 1.30 to 1.60%
Nickel Maximum of 0.25%
Molybdenum Maximum of 0.10%
Copper Maximum of 0.35%

Mechanical Properties

Tensile Strength
Yield Strength
Elongation in two inches \hdots \hdots \hdots \hdots
Reduction in area \hdots 8%
Modulus of Elasticity 29,500,000 psi
Density

†Per AMS 6440

Material Conversion									
Material	AISI	Federal	Military	ASTM	JIS	UNS	DIN	AMS	Military and Gov't Stds.
E0400								6440	MS 19059
52100 Chrome	E52100	FED-STD-66D	MIL-B-1083	A295	SUJ-2	G-52986	100Cr6	6444 [†]	MS 19059
Cilionie								6444††	

[†] Premium aircraft quality, consumable electrode vacuum melted.

^{††} Balls, low chromium, high-carbon steel, hardened and tempered.

52100 Chrome Steel Balls

Size in Inches	Metric Sizes	Minimum Crushing Load in Pounds	Balls per Pound	Balls per Carton⁺	Metric Balls per Carton	Weight per Carton Pounds
.006	000		45,045,000	_	por our ton	_
.008		_	13,192,612	_		_
.01		_	6,802,721	_		_
.015		_	1,996,007	_		_
.02		_	841,751	_		_
.025		_	431,406	_		_
1/32		_	221,141	_		_
3/64	1mm	-	65,496	_	150,000	_
1/16		275	27,600	300,000	200,000	10.9
5/64	_	345	14,286	100,000		10.5
3/32	2mm	618	8,200	60,000	80,000	12.2
7/64	•	842	5,150	60,000	50.000	11.6
1/8	3mm	1,100	3,460	40,000	50,000	11.6
9/64		1,392	2,425	30,000		12.4
5/32		1,718	1,770	20,000	00.000	11.3
11/64	4mm	2,080	1,330	15,000	20,000	11.3
3/16	F	2,475	1,020	12,500	10.000	12.2
13/64	5mm	2,905	805	10,000	10,000	12.4
7/32		3,368	645	8,000		12.4
15/64	C	3,867	524	6,000	0.000	11.4
1/4	6mm	4,400	432	5,000	6,000	11.6
17/64	7	4,730	360	4,000	4.000	11.1
9/32	7mm	5,568	303	3,500	4,000	11.5
5/16	8mm	6,875	221	2,500	2,500	11.3
11/32	9mm	8,318	166	2,600	1,750	12.0
3/8		9,900	128	1,500		11.7
13/32	10mm	11,618	101	1,250	1,250	12.4
7/16	11mm	13,475	81	1,000	1,000	12.4
15/32	12mm	15,468	66	750	750	11.4
1/2	12111111	17,600	54	500	750	11.1
17/32		18,062	45	500		11.1
9/16		20,250	38	450		11.9
19/32		22,562	32	350		10.9
5/8		25,000	28	300		10.9
21/32		27,562	24	250		10.5
11/16		30,250	21	250		12
23/32		33,062	18	200		11
3/4		36,000	16	250		12.5
13/16		42,250	13	150		11.9
7/8		49,000	10	100		9.9
15/16		56,250	8	75		9.2
1		64,000	6.7	70		10.4

 $[\]ensuremath{^{\dagger}}$ Grade 10 and better packed in smaller quantities in bubble pack.

440C Stainless Steel Balls

Material Characteristics

Three quality stainless steels are available for applications in corrosive environments. AISI Type 440C offers the greatest hardness and surface finish, and is available in double vacuum melted materials. AISI Type 302 provides extreme toughness and corrosion resistance from oxidizing solutions and many organic chemicals in an unhardened state.

Hardness

Our modern heat treating facilities, complete with controlled atmosphere and temperature, allow us to maintain Rockwell hardness within three (3) points in any production run and to attain any specific hardness designated by the customer. AISI 440C corrosion resistant, hardened steel balls are made with a through hardness from RC 58 to 65†, depending on requirements. (A table correcting Rockwell "C" values for the curved surface to Rockwell "C" for parallel flats may be found on page 6).

†Per ABMA Std 10, Table 1

Material Analysist

Carbon 0.95 to 1.20%
Manganese Maximum of 1.00%
Silicon Maximum of 1.00%
Phosphorus Maximum of .40%
Sulphur Maximum of .30%
Chromium
Molybdenum Maximum of .75%
Nickel Maximum of .75%
Conner Maximum of 50%

Mechanical Properties

Tensile Strength	285,000 ps
Yield Strength	275,000 ps
Elongation in two inches	2%
Reduction in area	10%
Modulus of Elasticity 29,	000,000 ps
Density	cubic inch

NOTE: All stainless steel balls are passivated. 420 stainless steel balls available on request.

†Per AMS 5630

Material Conversion									
Material	AISI	Federal	Military	ASTM	JIS	UNS	DIN	AMS	Military and Gov't Stds.
					•			5630	
Type 440C	440C	QQ-S-763	_	A276	SUS440C	S-44004	X105CrMo17	5618 [†]	MS 19060
		CL 440C						7445 ^{††}	

[†] Consumable electrode vacuum melted.

^{††} Balls, corrosion resistant steel, 17Cr, hardened.

440C Stainless Steel Balls

Size in Inches	Metric Sizes	Balls per Pound	Metric Balls per Carton [†]	Metric Balls per Carton	Carton in Approximate Pounds
.006		45,871,000	_		_
.008		13,477,082	_		_
.010		6,944,444	_		_
.015		2,040,816	_		_
.020		861,326	_		_
.025		440,723	_		_
1/32	1	225,938			_
3/64	1mm	66,916	_	400,000	_
1/16	0	28,200	200,000	150,000	9.0
3/32	2mm	8,380	60,000	150,000	12.2
7/64	0	5,263	60,000	00.000	11.6
1/8	3mm	3,530	40,000	60,000	11.6
9/64		2,481	30,000		12.4
5/32	4	1,810	20,000	00.000	11.3
11/64	4mm	1,359	15,000	20,000	11.3
3/16	F	1,050	12,500	10.000	12.2
13/64	5mm	822	10,000	10,000	12.4
7/32		659	8,000		12.4
15/64	Gmm	536	6,000	6 000	11.4
1/4	6mm	441	5,000	6,000	11.6
17/64	7mm	368	4,000	4.000	11.1
9/32	7mm	310	3,500	4,000	11.5
5/16	8mm	226	2,500	2,500	11.3
11/32	9mm	170	2,600	1,750	12.0
3/8		131	1,500		11.7
13/32	10mm	103	1,250	1,250	12.4
7/16	11mm	82	1,000	1,000	12.4
15/32	12mm	67	750	750	11.4
1/2	12111111	51	500	750	11.1
17/32		46	500		11.1
9/16		39	450		11.9
5/8		28	300		10.6
11/16		21	250		11.8
3/4		16	150		12.5
13/16		13	150		11.9
7/8		10	100		9.9
15/16		8	75		9.2
1		7	50		10.4

 $[\]ensuremath{^{\dagger}}$ Grade 10 and better packed in smaller quantities in bubble pack.

302, 302HQ, 316, 316L Stainless Steel Balls

Material Characteristics

For resistance to sulfuric acid compounds and other severely corrosive environments, Type 316 austenitic steel with increased nickel is available. If required, Thomson can also provide a quality ball in Types 410, 420, and 430 stainless steels.

Hardness

Non-annealed hardness, uniform throughout, as measured on parallel flats, is typically Rockwell "C" 25 to 39†. Annealed hardness, available on request, is typically Rockwell "B" 75 to 90. (A table converting Rockwell "C" to Rockwell "B" and Brinell ratings may be found on page 6.)

†Per ABMA Std 10, Table 1

Material Analysis† – 302/302HQ

Carbon	Maximum of 0.15%
Manganese	Maximum of 2.00%
Phosphorus	laximum of 0.045%
Sulphur	laximum of 0.030%
Silicon	Maximum of 1.00%
Chromium	17.00 to 19.00%
Nickel	8.00 to 10.00%
Nitrogen	Maximum of 0.10%
Coppertt	3.00 to 4.00%
†Per ASTM A276-89 ††Type HQ	

Mechanical Properties (Type 302) (At Rockwell "B" 75-90)

Tensile Strength	100,000 to 180,000 psi
Yield Strength	50,000 to 150,000 psi
Elongation in two inches \dots	55 to 60%
Reduction in area	55 to 65%
Modulus of Elasticity	29,000,000 psi
Density	286 lh /cuhic inch

Material Analysis† – 316/316L

Carbon	.Maximum of 0.08% (0.03%)†1
Manganese	Maximum of 2.00%
Phosphorus	Maximum of 0.045%
Sulphur	Maximum of 0.030%
Silicon	Maximum of 1.00%
Chromium	16.00 to 18.00%
Nickel	10.00 to 14.00%
Nitrogen	Maximum of 0.10%
Molybdenum	2.00 to 3.00%
†Per ASTM A276-89	††Type 316

Mechanical Properties (Type 316)

Tensile Strength90,000 psi
Yield Strength45,000 psi
Elongation in two inches
Reduction in area
Modulus of Elasticity
Density
NOTE: All stainless steel balls are passivated. 420 stainless steel balls available on request.

Material Conversion							
Material	AISI	Federal	ASTM	DIN	UNS	JIS	AMS
	Type 302	QQ-S-763	A276	_	S-30200	_	5636
Stainless		CL 302					
Steel	Type 316	QQ-S-763	A276	X5CrNiMo17122	S-31603	SUS316	5648
		CL 316					

Monel and K-Monel Balls

Material Characteristics

Monel: The ultimate in resistance to corrosion from steam, gas, salt water, ammonia, calcium chloride, acidic foods, high temperatures and other extreme environments. A low-hardness ball made from a special nickel-copper alloy.

Hardness: Monel 400

Typical hardness, as measured on parallel flats, is: Rockwell "B" 85 to 95†.

†Per ABMA Std 10, Table I

Material Analysist – Monel

Nickel	Minimum of 63.0%
Copper	28.0 to 34.0%
Iron	Maximum of 2.50%
Manganese	Maximum of 0.20%
Carbon	Maximum of 0.30%
Silicon	Maximum of 0.50%

†Per ASM Metals Handbook

Material Characteristics

K-Monel: A slightly harder material with corrosion resistance equal to Monel.

Hardness: K-Monel 500

Typical hardness, as measured on parallel flats, is: Rockwell "C" 27 minimum†.

†Per ABMA Std 10. Table I

Material Analysist – K-Monel

Nickel
Copper
Iron Maximum of 2.00%
Manganese Maximum of 1.50%
Carbon Maximum of 0.25%
Silicon Maximum of 0.50%
Aluminum 2.0 to 4.0%
+Dor ACM Motole Handbook

†Per ASM Metals Handbook

Material Conversion						
Material	AISI	Federal	ASTM	UNS	AMS	
Monel 400		QQ-N-281	B164	N-04400	4730	
Widilei 400	_	Class A	D104			
K-Monel 500		QQ-N-286		N-05500	4676	
K-MOHEL 300	_	Class B	_	14-03300		

Monel and K-Monel Balls

General Data					
Size in Inches	Metric Sizes	Balls per Pound	Balls per Carton	Metric Balls per Carton	Weight per Carton in Pounds
1/16		25,564	200,000		9.8
3/32		7,574	60,000		13.2
7/64	3mm	4,762	60,000	E0 000	12.6
1/8	311111	3,195	40,000	50,000	12.5
9/64		2,247	30,000		13.4
5/32	4mm	1,636	20,000	20,000	12.2
11/64	4111111	1,228	15,000	20,000	12.2
3/16	5mm	946	12,500	10.000	13.2
13/64	311111	745	10,000	10,000	13.4
7/32		596	8,000		13.4
15/64	6mm	485	6,000	6 000	12.4
1/4	OIIIIII	399	5,000	6,000	12.5
17/64	7mm	333	4,000	4,000	12.0
9/32	7111111	280	3,500	4,000	12.5
5/16		204	2,500		12.2
11/32	8mm	153	2,000	2,500	13.0
3/8	9mm	118	1,500	1,750	12.7
7/16	10, 11, 12mm	74	1,000	1,250, 1,000, 750	13.4
1/2		50	500		10.0
9/16		35	300		8.6
5/8		25	250		9.8
3/4		15	150		10.1

Brass and Bronze Balls

Material Characteristics

Corrosion resistant material similar to bronze, with greater tensile and yield strength.

Hardness – (Brass)

Typical hardness, as measured on parallel flats, is approximately Rockwell "B" 75 to 87†.

†Per ABMA Std 10, Table I

Material Analysis† – (Brass) CDA 270

Copper	63.0 to 68.5%
Zinc	33.5 to 36.5%
Other Flements	Trace Max

†Per ASM Metals Handbook NOTE: Brass balls available in CDA 260

Material Characteristics

A high quality alloy created for environments attacked by water, gasoline, and certain solvents.

Hardness – (Bronze)

Typical hardness, as measured on parallel flats, is approximately Rockwell "B" 75-98†.

†Per ABMA Std 10, Table I

Material Analysist - (Bronze) CA 220

Copper 8	39.0 to 91.0%
Zinc 0	08.5 to 10.5%
Other Elements	Trace, Max.

† Per ASM Metals Handbook

Material Conversion											
Material	AISI	Federal	ASTM	UNS	AMS						
Yellow Brass	_	QQ-W-321	B134	C-27000	4712						
Commercial Bronze	-	AA-W-321	B134	C-22000	-						

General Data (Brass Balls)†				
Size in Inches	Metric Sizes	Balls per Pound	Balls per Carton	Metric Balls per Carton	Weight per Carton in Pounds
1/16		25,600	200,000		9.7
3/32		7,570	60,000		13.1
7/64	3mm	4,800	60,000	50,000	12.5
1/8	SIIIII	3,200	40,000	30,000	12.4
9/64		2,225	30,000		13.3
5/32	4mm	1,630	20,000	20,000	12.2
11/64	4111111	1,235	15,000	20,000	12.1
3/16	Emm	947	12,500	10.000	13.1
13/64	5mm	749	10,000	10,000	13.4
7/32		596	8,000		13.3
15/64	6mm	487	6,000	6,000	12.3
1/4		400	5,000	0,000	12.4
17/64	7mm	335	4,000	4,000	11.9
9/32	7111111	281	3,500	4,000	12.4
5/16		205	2,500	0.500	12.2
11/32	8mm 9mm	154	2,000	2,500 1,750	12.9
3/8	10, 11, 12mm	118	1,500	1,250, 1,000, 750	12.6
7/16	10, 11, 1211111	74	1,000	1,230, 1,000, 730	13.3
1/2		50	500		10.0
9/16		35	300		8.5
5/8		26	250		9.7
11/16		19	200		10.4
3/4		15	150		10.1
1		_	50		8.0

 $^{^{\}scriptscriptstyle \dagger}$ Note: Other analyses of Brass and Bronze available upon request.

Nylon and Specialty Plastic Balls

Zytel® Nylon 101 Balls

Widue III Sizes II 0111 3/32 to 3/4
Size Tolerance
± .002 (SPH) .001

Physical Properties

Coefficient of linear thermal expansion in./in./°F4.5 x 10-5
Heat Distortion temp. at 264 psi
at 66 psi
Water Absorption (24 hrs.)
Specific Gravity1.14
Hardness (Rockwell R118)
Tensile strength at 77° F 10,900 psi
Modulus of elasticity at 77° F 400,000 psi
Shear strength

Lexan® Balls

Polycarbonate Resin
Sizes 1/8" to 3/4"

SPH .± .001
Tolerance± .002

Physical Properties

Color

ColorLight Amber
Specific Gravity1.20
Rockwell Hardness M70, R118
Tensile strength8,000 to 9,000 psi
Water Absorption (24 hrs.)
Heat Distortion temp. at 66 psi 283° F
Tabor abrasion (C5-17 Wheel)7-11/1000 cycle
Flammability Self-Extinguishing
Impact Strength

Delrin® Acetal Balls

Sizes 1/8" to 3/4"	
SPH	
Tolerance)

Physical Properties

Acetal Resin

•
Color Natural (white)
Specific Gravity1.425
Rockwell HardnessM94, R120
Tensile strength
Water Absorption (24 hrs.)
Heat Distortion temp. at 66 psi
Tabor abrasion (CS-17 Wheel) 20 mg/1000 cycles
FlammabilityFlammable
Impact Strength

Available Grades and Tolerances

Grade†	Tolerancett	Sphericity
0	±.0005"	.0005"
1	±.001	.0005
II	±.002	.001
III	±.005	.005
IV	±.015	_

[†]Tolerance to +/-.0005 inches is possible for certain materials such as Nylon® and Acetal®. Surfaces can be tailored from rough to highly polished finishes. ††Grades apply to plastic balls only.

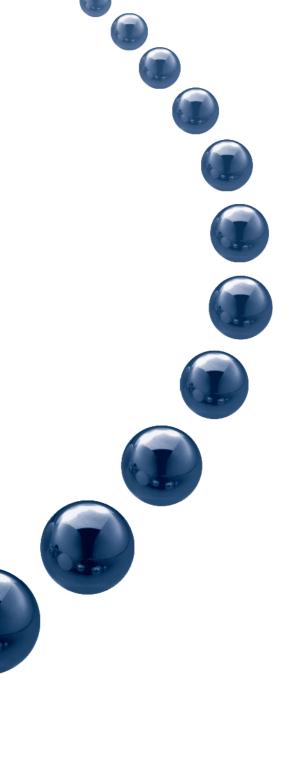
Special Balls (Available on Request)

- 1. Haynes Star-J
- 2. Haynes® 25
- 3. Hastelloy® Alloys
- 4. Haynes Stellite®
- 5. Tungsten Carbide

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product of ro a specific application. SC9008 Danaher Motion.

Light Amher

Ceramic Balls


For extremely high temperature environments or applications exposed to harsh chemicals, balls made of engineered ceramics offer excellent performance characteristics. Thomson offers a variety of precision ceramic balls, each providing its own unique corrosion and heat resistant qualities.

Silicon Nitride

A popular choice among bearing designs and other high precision product applications. When compared to steel, this material offers a 60% reduction in weight, up to twice the material hardness, a coefficient of thermal expansion that is 70% less than steel, and a temperature operating range up to 1800° F (982° C). Silicon nitride balls are non-corrosive, anti-magnetic, and excel in low noise, high rigidity, and high load carrying applications. These balls can be run dry in a vacuum environment and up to 500° F without lubrication.

Zirconia

A high-strength material that performs well in temperatures up to 1000° F (538° C). Operates well in environments such as molten metals, organic solvents, caustics and most acids. Because of its good resistance to abrasion and corrosion, it is often used as check valves for flow control. Zirconia undergoes "transformation toughening" when stressed by impact. This tends to stop cracks from spreading and increases the ball's strength in the stressed area.

Titanium/Precision 440A/430

Material Characteristics

This highly inert material is lightweight, offers exceptional anti-corrosive properties, operates effectively in high temperature applications, provides a high level of tension/compression strength, and has expansion characteristics similar to steel. Titanium is used extensively in aerospace applications as well as in the chemical, food processing, and medical implant industries.

Precision 440A Stainless Steel Hollow Balls

The one-inch hollow ball is utilized in weight sensitive applications requiring a combination of high surface hardness with material fracture toughness. Minimum crush strength is 6,000 lbs. Typical weight is 23 grams as compared to 65 grams for a solid ball, a reduction in weight of over 60%. Available in Grade 1000 tolerance or higher. Typical applications include aircraft ball transfer units, liquid float systems, and custom ball valves.

Hardness

440A stainless steel hardness as measured on parallel flats is Rockwell "C" 52-60.

Material Analysis – (Type 440A Stainless Steel)

Carbon
Manganese Maximum of 1.00%
Phosphorus Maximum of 0.040%
Sulphur Maximum of 0.030%
Silicon Maximum of 1.00%
Chromium
Molybdenum Maximum of 0.75%

430 Stainless Steel Balls

Type 430 stainless steel is an economical stainless material that provides corrosion resistance at low cost. Typical applications for this product include cosmetic mixing media, decorative trim, and light duty ball valves.

Hardness

430 stainless steel is a non-hardenable stainless steel.

Material Analysis – (Type 430 Stainless Steel)

Carbon Maximum of 0.12%
Manganese Maximum of 1.00%
Phosphorus Maximum of 0.040%
Sulphur Maximum of 0.030%
Silicon Maximum of 1.00%
Chromium

Metric Equivalents - Dimensional Conversions

Millir	neter /	Decima	al / Fra	action (Conver	sion C	hart†										
Milli- Meter	Decimal	Fraction (inches)	Milli- Meter	Decimal	Fraction (inches)	Milli- Meter	Decimal	Fraction (inches)	Milli- Meter	Decimal	Fraction (inches)	Milli- Meter	Decimal	Fraction (inches)	Milli- Meter	Decimal	Fraction (inches)
0.1	.0039		4.366	.1719	11/64	8.6	.3386		12.9	.5079		17.1	.6732		21.4	.8425	
0.2	.0079		4.4	.1732		8.7	.3425		13.0	.5118		17.2	.6772		21.431	.8438	27/32
0.3	.0118		4.5	.1772		8.731	.3438	11/32	13.097	.5156	33/64	17.3	.6811		21.5	.8465	
0.397	.0156	1/64	4.6	.1811		8.8	.3465		13.1	.5157		17.4	.6850		21.6	.8504	
0.4	.0157		4.7	.1850		8.9	.3504		13.2	.5197		17.463	.6875	11/16	21.7	.8543	
0.5	.0197		4.763	.1875	3/16	9.0	.3543		13.3	.5236		17.5	.6890		21 8	.8583	
0.6	.0236		4.8	.1890		9.1	.3583		13.4	.5276		17.6	.6929		21.828	.8594	55/64
0.7	.0276		4.9	.1929		9.128	.3594	23/64	13.494	.5313	17/32	17.7	.6968		21.9	.8622	
0.794	.0313	1/32	5.0	.1969		9.2	.3622	=0,01	13.5	.5315	,	17.8	.7008		22.0	.8661	
0.8	.0315	1,752	5.1	.2008		9.3	.3661		13.6	.5354		17.859	.7031	45/64	22.1	.8701	
0.9	.0354		5.159	.2031	13/64	9.4	.3701		13.7	.5394		17.9	.7047	10/01	22.2	.8740	
1.0	.0394		5.2	.2047	10/01	9.5	.3740		13.8	.5433		18.0	.7087		22.225	.8750	7/8
1.1	.0433		5.3	.2087		9.525	.3750	3/8	13.891	.5469	35/64	18.1	.7126		22.3	.8780	170
1.191	.0469	3/64	5.4	.2126		9.6	.3780	0,0	13.9	.5472	00/01	18.2	.7165		22.4	.8819	
1.12	.0472	0/ 0 1	5.5	.2165		9.7	.3819		14.0	.5512		18.256	.7188	23/32	22.5	.8858	
1.12	.0512		5.556	.2188	7/32	9.8	.3858		14.1	.5551		18.3	.7205	20/02	22.6	.8898	
1.4	.0551		5.6	.2205	1/32	9.9	.3898		14.2	.5591		18.4	.7244		22.622	.8906	57/64
1.5	.0591		5.7	.2244		9.922	.3906	25/64	14.288	.5625	9/16	18.5	.7283		22.7	.8937	37/04
1.588	.0625	1/16	5.8	.2283		10.0	.3937	23/04	14.200	.5630	3/10	18.563	.7323	47/64	22.8	.8976	
1.6	.0630	1/10	5.9	.2323		10.0	.3976		14.3	.5669		18.6	.7344	47/04	22.9	.9016	
					15/04												
1.7	.0669		5.953	.2344	15/64	10.2	.4016		14.5	.5709		18.7	.7362		23.0	.9055	20/22
1.8	.0709		6.0	.2362		10.3	.4055	10/00	14.6	.5748	27/64	18.8	.7402		23.019	.9063	29/32
1.9	.0748	E /O.4	6.1	.2402		10.319	.4063	13/32	14.684	.5781	37/64	18.9	.7441		23.1	.9094	
1.984	.0781	5/64	6.2	.2441		10.4	.4094		14.7	.5787		19.0	.7480	0/4	23.2	.9134	
2.0	.0787		6.3	.2480	4/4	10.5	.4134		14.8	.5827		19.050	.7500	3/4	23.3	.9173	
2.1	.0827		6.350	.2500	1/4	10.6	.4173		14.9	.5866		19.1	.7520		23.4	.9213	
2.2	.0866		6.4	.2520		10.7	.4213	07/04	15.0	.5906	40/00	19.2	.7559		23.416	.9219	59/64
2.3	.0906	- (6.5	.2559		10.716	.4219	27/64	15.081	.5938	19/32	19.3	.7598		23.5	.9252	
2.381	.0938	3/32	6.6	.2598		10.8	.4252		15.1	.5945		19.4	.7638	40/04	23.6	.9291	
2.4	.0945		6.7	.2638		10.9	.4291		15.2	.5984		19.447	.7656	49/64	23.7	.9331	
2.5	.0984		6.747	.2656	17/64	11.0	.4331		15.3	.6024		19.5	.7677		23.8	.9370	
2.6	.1024		6.8	.2677		11.1	.4370		15.4	.6063		19.6	.7717		23.813	.9375	15/16
2.7	.1063		6.9	.2717		11.113	.4375	7/16	15.478	.6094	39/64	19.7	.7756		23.9	.9409	
2.778	.1094	7/64	7.0	.2756		11.2	.4409		15.5	.6102		19.8	.7795		24.0	.9449	
2.8	.1102	71	7.1	.2795		11.3	.4449		15.6	.6142		19.844	.7813	25/32	24.1	.9488	
2.9	.1142		7.144	.2813	9/32	11.4	.4488		15.7	.6181		19.9	.7835		24.2	.9567	
3.0	.1181		7.2	.2835		11.5	.4528		15.8	.6220		20.0	.7874		24.209	.9531	61/64
3.1	.1220		7.3	.2874		11.509	.4531	29/64	15.875		5/8	20.1	.7913		24.3	.9567	
3.175	.1250	1/8	7.4	.2913		11.6	.4567		15.9	.6260		20.2	.7953		24.4	.9606	
3.2	.1260		7.5	.2953		11.7	.4606		16.0	.6299		20.241	.7969	51/64	24.5	.9646	
3.3	.1299		7.541	.2969	19/64	11.8	.4646		16.1	.6339		20.3	.7992		24.6	.9685	
3.4	.1339		7.6	.2992		11.9	.4685		16.2	.6378		20.4	.8031		24.606	.9688	31/32
3.5	.1378		7.7	.3031		11.906	.4688	15/32	16.272	.6406	41/64	20.5	.8071		24.7	.9724	
3.572	.1406	9/64	7.8	.3071		12.0	.4724		16.3	.6417		20.6	.8110		24.8	.9764	
3.6	.1417		7.9	.3110		12.1	.4764		16.4	.6457		20.638	.8125	13/16	24.9	.9803	
3.7	.1457		7.938	.3125	5/16	12.2	.4803		16.5	.6496		20.7	.8150		25.0	.9843	
3.8	.1496		8.0	.3150		12.3	.4843		16.6	.6535		20.8	.8189		25.003	.9844	63/64
3.9	.1535		8.1	.3189		12.303	.4844	31/64	16.669	.6563	21/32	20.9	.8228		25.1	.9882	
3.969	.1563	5/32	8.2	.3228		12.4	.4882		16.7	.6575		21.0	.8268		25.2	.9921	
4.0	.1575		8.3	.3268		12.5	.4921		16.8	.6614		21.034	.8281	53/64	25.3	.9961	
4.1	.1614		8.334	.3281	21/64	12.6	.4961		16.9	.6654		21.1	.8307		25.400	1.00001	
4.2	.1654		8.4	.3307		12.7	.5000	1/2	17.0	.6693		21.2	.8346				
4.3	.1693		8.5	.3346		12.8	.5039		17.066	.6719	43/64	21.3	.8386				

Quick Quote Fax Form

To receive your quote, please complete this form and fax it to us at: 1-540-639-4162. You can also email the information requested in this quote to BALLRFQS@DANAHERMOTION.COM or call our customer service group at 1-540-633-3400.

Crade Quantity Estimated Annual Usage Other Specifications Please provide detailed contact information in case we need clarifications on your quote: Name: Title: Company: Address:	Туре					
Quantity Estimated Annual Usage Other Specifications Please provide detailed contact information in case we need clarifications on your quote: Name: Title: Company: Address:	Size					
Estimated Annual Usage Other Specifications Please provide detailed contact information in case we need clarifications on your quote: Name: Title: Company: Address:	Grade					
Other Specifications Please provide detailed contact information in case we need clarifications on your quote: Name: Title: Company: Address:	Quantity					
Please provide detailed contact information in case we need clarifications on your quote: Name: Title: Company: Address:						
Name: Title: Company: Address:						
Name: Title: Company: Address:		 -				
Name: Title: Company: Address:		 				
Name: Title: Company: Address:		 				
Name: Title: Company: Address:						
Name: Title: Company: Address:						
Name: Title: Company: Address:						
Title: Company: Address:	Please provide detailed	contact information in case we	need clarifications on	your quote:		
Title: Company: Address:						
Company:Address:						
Address:	Title:					
	Company:					
0	Address:					
City: State: ZIP: Country:	City:			ZIP:	Countr	y:

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2008 Danaher Motion.

Phone:

Quality Assurance

Thomson's A2LA Certified Calibration Lab

The Thomson's A2LA accredited calibration laboratory offers a unique blend of the finest environment of metrology for the calibration of spheres and forty-five years of experience manufacturing Thomson precision balls. The experience assures our customers that the spheres we calibrate for them do not contain any hidden damage which might go undetected by a calibration lab inexperienced in working with spheres.

How Can Our Lab Help You?

If an organization is required to be compliant or registered to TS-16949, it shall meet 7.6.3 for testing, inspection and and calibration.

For external laboratories, 7.3.3.2 states that external/commercial/independent laboratory facilities used for inspection, test or calibration services by the organization shall have a defined laboratory scope that includes the capability to perform the required inspection, test or calibration, and that laboratory shall either.

- provide evidence that it is acceptable to the customer, or
- be accredited to ISO/IEC 17025 or national equivalent.

When it is decided that an ISO/IEC accredited lab is preferred, Danaher can meet that obligation.

For example: suppose a facility uses a coordinate axis measuring machine and the check standard is a ball bar. An ISO 17025 accredited calibration laboratory, whose scope of accreditation includes spheres, must calibrate that sphere. The manufacturer of the ball bar may have supplied a calibration for that sphere. However, unless the manufacturer is ISO 17025 compliant and their scope of accreditation includes spheres, their certificate does not meet the requirements of TS-16949.

Danaher Motion's calibration laboratory management system has been audited and found to comply with A2LA guidelines and ISO 17025.

How To Determine Competency

A good indicator of competency for a calibration laboratory is the degree of uncertainty that lab is able to demonstrate. Danaher Motion's metrology lab demonstrates an uncertainty of:

- 8 microinches for diameter calibration
- 0.56 microinches for roundbess calibration
- a dead band of less than 4 nanometers for surface finish calibration.

How Do We Achieve These Results?

Our laboratory comparison masters are Tungsten Carbide and have been calibrated by the National Institute of Standards and Technology (NIST) for minimum uncertainty and maximum accuracy. Our gage environment is controlled to be between Class 1000 and Class 10,000 cleanliness levels and temperature is regulated to +/- 0.5 degrees Fahrenheit.

Calibrating Diameter

We measure diameter in accordance with the requirements of ABMA Standard 10.

The instrumentation system consists of proprietary gage amplifiers operating at a range of +/- 0.001 inches with a resolution of +/- 0.000001 inches. The gage heads are mounted on precision comparator stands with a capacity of over 9 inches. The stands have rugged bases for stability and the gage heads are mounted units which allow friction free straight-line motion.

The specimen balls are positioned in custom crafted fixtures that assure the ball will return to the same gage location for each reading. This minimizes any adverse effect of surface condition or parallelism.

Calibrating Ball Sphericity

We measure ball sphericity on our proprietary geometrical gage system. This system uses a design specifically engineered to gage spheres. The holding system for this measurement will accommodate balls from 0.020 inch diameter to 10.00-inch diameter, with the appropriate fixturing. The active elements of the gage system are engineered to minimize any vibration.

Calibrating Surface Finish

We calibrate surface finish on our state of the art surface finish measuring equipment. This equipment is mounted on a vibration isolation table. The standard stylus is conical diamond. However, surface finish metrology is limited only by the ingenuity of the holding fixture. Our gage travel is limited to 50mm. The wavelength of the roughness filter can be as small as 0.0001 inches or as large as 1.0 inches. We are able to evaluate surface finish in as many as 27 different surface finish parameters.

The resolution is approximately four nm, which is only one nm less than the resolution NIST uses to measure surface finish. A NIST calibrated Tungsten Carbide check standard is used to verify the continued performance of the instrument.

For immediate assistance:

Danaher Motion Customer Service

E-mail: ballrfqs@danahermotion.com

Phone: 540-633-3400 Fax: 540-639-4162

> 203A West Rock Road Radford, VA 24141 USA

Local Sales Agents are also available at:

New York, Virginia, North and South Carolina

Eastern Technologies

Email: jfcook@mindspring.com

Phone: 919-870-5105 Fax: 919-870-8207

Pennsylvania, New Jersey Maryland and Delaware

C Warner Smith & Associates E-mail: vze587hb@verizon.net

Phone: 610-687-0750 Fax: 610 687-3650

Alabama, Georgia, Mississippi, Tennessee and Florida

Modern Sales, Inc.

E-mail: tad@modernsales.com

Phone: 205-999-8561 Fax: 205-870-7558

Indiana, Kentucky, West Virginia, and Ohio

Boberschmidt & Associates E-mail: lbober@cinci.rr.com

Phone: 513-831-7722 Fax: 513-248-3304

Illinois and Wisconsin

Rice Marketing Group, Inc. E-mail: rmginc1@comcast.net

Phone: 847-428-0455 Fax: 847-428-0844

Michigan and Ontario

Interlake, Products Inc

E-mail: interlakeprod@aol.com

Phone: 586-294-7440 Fax: 586-294-9415

Texas, Louisiana, Arkansas and Oklahoma

Premier Components

E-mail: Iburnett@premiercomponents.com

Phone: 512-244-3622 Fax: 512-244-3868

California

Nebco Sales

E-mail: bobnebozuk@nebcosales.com

Phone: 925-426-8131 Fax: 925-426-2393

200801-05 ?? KWP 3/1/2008 USA
Specifications are subject to change without notice. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks property of their respective owners.
© Danaher Motion GmbH 2008